SeifZEllaban

Still Wired?

Tesla’s life is a story of a meteoric rise to international prestige followed by an equally dramatic retreat into public shame, depression and loneliness.  The turning point seems to have occurred during Tesla’s time in Colorado Springs (May 1899 – January 1900).  It was during this point that he failed to properly confront reality. Denial of his failures led to further failure and further denial – a downward spiral which eventually led Tesla to a mental breakdown. This essay explores where Tesla went wrong.

What distinguished Tesla from other great scientific minds of his age was his ability to dream. Tesla had an uncanny ability to imagine how the human condition could be changed by technology. Tesla’s inventions — the brushless AC motor, wireless lighting, the radio controlled boat — all began with a clear concept in his own mind of how they would benefit humanity. Tesla explained his invention process as taking place completely within the visualization apparatus of his own mind.  Once Tesla had the concept of an invention fully visualized he then undertook the hard work of bringing it into reality, by running the necessary calculations and building and testing prototypes. This approach contrasted from that of many other scientists and engineers, who were more “tied to the bench” and more myopic in their thinking. Tesla’s imagination was, quite simply, unbounded.

Up until 1899, this approach worked well for Tesla. His greatest invention, the brushless AC motor, began with a realization that such a motor would be highly superior to the motors of his day. He also dreamed of an elegant AC system, free of AC-DC and DC-AC converters, to power his motor.  Despite an objection from his teacher that a brushless motor would be impossible, Tesla refused to relinquish his dream and carried it around for years before eventually stumbling upon a way to achieve it.

In addition to Tesla’s psychological disposition towards dreaming, it is important to also consider the society which Tesla interacted with during this time. In the economic sphere, electrification had created an investment and startup bubble of even greater frenzy than the heyday of the .com bubble of the 1990’s. Billion dollar industries arose out of thin air and the economy was lifted into a “long wave” of enhanced growth that would last for decades. The societal change brought about by electrification was literally one from dark to light. This rapid change created a zeitgeist of technological optimism that can scarcely be comprehended today, since everyone alive today was born with electricity. The sheer magnitude of technological change during that time period boggles the mind. Tesla thrived in this era of technological optimism and his ideas were eagerly picked up by the leading newspapers of the day. Tesla was close friends with several journalists and actively took part in the promotion of his ideas in the press, hoping that investors would seek him out as a result. In the sensational coverage Tesla received, fact and fiction were blurred and Tesla was lauded for having demonstrated inventions he had not yet actually built. This public prestige made Tesla even more sure that even his most grandiose dreams could be realized.

In 1899, Tesla’s big dream was wireless power. Tesla had already demonstrated wireless transmission of power over small distances in his lab. Now, Tesla imagined constructing special stations which would send electricity and communications to the entire globe, an idea he called the World Wireless System. His ideas were lauded the press, for instance.

The primary coil's resonant frequency is tuned to that of the secondary, by using low-power oscillations, then increasing the power (and retuning if necessary) until the system operates properly at maximum power. While tuning, a small projection (called a "breakout bump") is often added to the top terminal in order to stimulate corona and spark discharges (sometimes called streamers) into the surrounding air. Tuning can then be adjusted so as to achieve the longest streamers at a given power level, corresponding to a frequency match between the primary and secondary coil. Capacitive "loading" by the streamers tends to lower the resonant frequency of a Tesla coil operating under full power. A toroidal topload is often preferred to other shapes, such as a sphere. A toroid with a major diameter that is much larger than the secondary diameter provides improved shaping of the electrical field at the topload. This provides better protection of the secondary winding (from damaging streamer strikes) than a sphere of similar diameter. And, a toroid permits fairly independent control of top load capacitance versus spark breakout voltage. A toroid's capacitance is mainly a function of its major diameter, while the spark breakout voltage is mainly a function of its minor diameter. A grid dip oscillator (GDO) is sometimes used to help facilitate initial tuning and aid in design. The resonant frequency of the secondary can be difficult to determine except by using a GDO or other experimental method, whereas the physical properties of the primary more closely represent first-order approximations of RF tank design. In this schema the secondary is built somewhat arbitrarily in imitation of other successful designs, or entirely so with supplies on hand, it's resonant frequency is measured and the primary designed to suit the requirements for wirelessly powering other devices.

And we are always trying to make the most efficient version of this tesla coils possible to reduce the costs needed to make the wireless system a viable option for all of the applications.


You can always read more about our work on this project, if you want to please click here.